Copied to
clipboard

G = C42.24Q8order 128 = 27

24th non-split extension by C42 of Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.24Q8, C8⋊C416C4, C429C4.5C2, C42.142(C2×C4), C428C4.7C2, (C22×C4).279D4, C23.752(C2×D4), C4.3(C42.C2), C2.9(C428C4), C4.59(C42⋊C2), C22.65(C8⋊C22), C22.4Q16.47C2, (C2×C42).255C22, (C22×C8).385C22, C2.8(M4(2)⋊C4), (C22×C4).1340C23, C22.57(C4.4D4), C22.54(C8.C22), C2.1(C42.28C22), C2.1(C42.30C22), C2.1(C42.29C22), (C2×C4).45(C4⋊C4), (C2×C8).144(C2×C4), C22.98(C2×C4⋊C4), (C2×C4).192(C2×Q8), (C2×C8⋊C4).28C2, (C2×C4⋊C4).46C22, (C2×C4).558(C4○D4), (C2×C4).538(C22×C4), SmallGroup(128,568)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.24Q8
C1C2C22C2×C4C22×C4C22×C8C2×C8⋊C4 — C42.24Q8
C1C2C2×C4 — C42.24Q8
C1C23C2×C42 — C42.24Q8
C1C2C2C22×C4 — C42.24Q8

Generators and relations for C42.24Q8
 G = < a,b,c,d | a4=b4=1, c4=b2, d2=b-1c2, ab=ba, cac-1=ab2, dad-1=a-1b2, bc=cb, dbd-1=b-1, dcd-1=a2c3 >

Subgroups: 220 in 112 conjugacy classes, 60 normal (16 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C22×C4, C2.C42, C8⋊C4, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C22.4Q16, C428C4, C429C4, C2×C8⋊C4, C42.24Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C2×C4⋊C4, C42⋊C2, C4.4D4, C42.C2, C8⋊C22, C8.C22, C428C4, M4(2)⋊C4, C42.28C22, C42.29C22, C42.30C22, C42.24Q8

Smallest permutation representation of C42.24Q8
Regular action on 128 points
Generators in S128
(1 79 21 62)(2 76 22 59)(3 73 23 64)(4 78 24 61)(5 75 17 58)(6 80 18 63)(7 77 19 60)(8 74 20 57)(9 54 46 32)(10 51 47 29)(11 56 48 26)(12 53 41 31)(13 50 42 28)(14 55 43 25)(15 52 44 30)(16 49 45 27)(33 95 125 71)(34 92 126 68)(35 89 127 65)(36 94 128 70)(37 91 121 67)(38 96 122 72)(39 93 123 69)(40 90 124 66)(81 107 115 101)(82 112 116 98)(83 109 117 103)(84 106 118 100)(85 111 119 97)(86 108 120 102)(87 105 113 99)(88 110 114 104)
(1 49 5 53)(2 50 6 54)(3 51 7 55)(4 52 8 56)(9 59 13 63)(10 60 14 64)(11 61 15 57)(12 62 16 58)(17 31 21 27)(18 32 22 28)(19 25 23 29)(20 26 24 30)(33 104 37 100)(34 97 38 101)(35 98 39 102)(36 99 40 103)(41 79 45 75)(42 80 46 76)(43 73 47 77)(44 74 48 78)(65 116 69 120)(66 117 70 113)(67 118 71 114)(68 119 72 115)(81 92 85 96)(82 93 86 89)(83 94 87 90)(84 95 88 91)(105 124 109 128)(106 125 110 121)(107 126 111 122)(108 127 112 123)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 83 55 92)(2 120 56 71)(3 81 49 90)(4 118 50 69)(5 87 51 96)(6 116 52 67)(7 85 53 94)(8 114 54 65)(9 39 57 100)(10 126 58 109)(11 37 59 98)(12 124 60 107)(13 35 61 104)(14 122 62 105)(15 33 63 102)(16 128 64 111)(17 113 29 72)(18 82 30 91)(19 119 31 70)(20 88 32 89)(21 117 25 68)(22 86 26 95)(23 115 27 66)(24 84 28 93)(34 75 103 47)(36 73 97 45)(38 79 99 43)(40 77 101 41)(42 127 78 110)(44 125 80 108)(46 123 74 106)(48 121 76 112)

G:=sub<Sym(128)| (1,79,21,62)(2,76,22,59)(3,73,23,64)(4,78,24,61)(5,75,17,58)(6,80,18,63)(7,77,19,60)(8,74,20,57)(9,54,46,32)(10,51,47,29)(11,56,48,26)(12,53,41,31)(13,50,42,28)(14,55,43,25)(15,52,44,30)(16,49,45,27)(33,95,125,71)(34,92,126,68)(35,89,127,65)(36,94,128,70)(37,91,121,67)(38,96,122,72)(39,93,123,69)(40,90,124,66)(81,107,115,101)(82,112,116,98)(83,109,117,103)(84,106,118,100)(85,111,119,97)(86,108,120,102)(87,105,113,99)(88,110,114,104), (1,49,5,53)(2,50,6,54)(3,51,7,55)(4,52,8,56)(9,59,13,63)(10,60,14,64)(11,61,15,57)(12,62,16,58)(17,31,21,27)(18,32,22,28)(19,25,23,29)(20,26,24,30)(33,104,37,100)(34,97,38,101)(35,98,39,102)(36,99,40,103)(41,79,45,75)(42,80,46,76)(43,73,47,77)(44,74,48,78)(65,116,69,120)(66,117,70,113)(67,118,71,114)(68,119,72,115)(81,92,85,96)(82,93,86,89)(83,94,87,90)(84,95,88,91)(105,124,109,128)(106,125,110,121)(107,126,111,122)(108,127,112,123), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,83,55,92)(2,120,56,71)(3,81,49,90)(4,118,50,69)(5,87,51,96)(6,116,52,67)(7,85,53,94)(8,114,54,65)(9,39,57,100)(10,126,58,109)(11,37,59,98)(12,124,60,107)(13,35,61,104)(14,122,62,105)(15,33,63,102)(16,128,64,111)(17,113,29,72)(18,82,30,91)(19,119,31,70)(20,88,32,89)(21,117,25,68)(22,86,26,95)(23,115,27,66)(24,84,28,93)(34,75,103,47)(36,73,97,45)(38,79,99,43)(40,77,101,41)(42,127,78,110)(44,125,80,108)(46,123,74,106)(48,121,76,112)>;

G:=Group( (1,79,21,62)(2,76,22,59)(3,73,23,64)(4,78,24,61)(5,75,17,58)(6,80,18,63)(7,77,19,60)(8,74,20,57)(9,54,46,32)(10,51,47,29)(11,56,48,26)(12,53,41,31)(13,50,42,28)(14,55,43,25)(15,52,44,30)(16,49,45,27)(33,95,125,71)(34,92,126,68)(35,89,127,65)(36,94,128,70)(37,91,121,67)(38,96,122,72)(39,93,123,69)(40,90,124,66)(81,107,115,101)(82,112,116,98)(83,109,117,103)(84,106,118,100)(85,111,119,97)(86,108,120,102)(87,105,113,99)(88,110,114,104), (1,49,5,53)(2,50,6,54)(3,51,7,55)(4,52,8,56)(9,59,13,63)(10,60,14,64)(11,61,15,57)(12,62,16,58)(17,31,21,27)(18,32,22,28)(19,25,23,29)(20,26,24,30)(33,104,37,100)(34,97,38,101)(35,98,39,102)(36,99,40,103)(41,79,45,75)(42,80,46,76)(43,73,47,77)(44,74,48,78)(65,116,69,120)(66,117,70,113)(67,118,71,114)(68,119,72,115)(81,92,85,96)(82,93,86,89)(83,94,87,90)(84,95,88,91)(105,124,109,128)(106,125,110,121)(107,126,111,122)(108,127,112,123), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,83,55,92)(2,120,56,71)(3,81,49,90)(4,118,50,69)(5,87,51,96)(6,116,52,67)(7,85,53,94)(8,114,54,65)(9,39,57,100)(10,126,58,109)(11,37,59,98)(12,124,60,107)(13,35,61,104)(14,122,62,105)(15,33,63,102)(16,128,64,111)(17,113,29,72)(18,82,30,91)(19,119,31,70)(20,88,32,89)(21,117,25,68)(22,86,26,95)(23,115,27,66)(24,84,28,93)(34,75,103,47)(36,73,97,45)(38,79,99,43)(40,77,101,41)(42,127,78,110)(44,125,80,108)(46,123,74,106)(48,121,76,112) );

G=PermutationGroup([[(1,79,21,62),(2,76,22,59),(3,73,23,64),(4,78,24,61),(5,75,17,58),(6,80,18,63),(7,77,19,60),(8,74,20,57),(9,54,46,32),(10,51,47,29),(11,56,48,26),(12,53,41,31),(13,50,42,28),(14,55,43,25),(15,52,44,30),(16,49,45,27),(33,95,125,71),(34,92,126,68),(35,89,127,65),(36,94,128,70),(37,91,121,67),(38,96,122,72),(39,93,123,69),(40,90,124,66),(81,107,115,101),(82,112,116,98),(83,109,117,103),(84,106,118,100),(85,111,119,97),(86,108,120,102),(87,105,113,99),(88,110,114,104)], [(1,49,5,53),(2,50,6,54),(3,51,7,55),(4,52,8,56),(9,59,13,63),(10,60,14,64),(11,61,15,57),(12,62,16,58),(17,31,21,27),(18,32,22,28),(19,25,23,29),(20,26,24,30),(33,104,37,100),(34,97,38,101),(35,98,39,102),(36,99,40,103),(41,79,45,75),(42,80,46,76),(43,73,47,77),(44,74,48,78),(65,116,69,120),(66,117,70,113),(67,118,71,114),(68,119,72,115),(81,92,85,96),(82,93,86,89),(83,94,87,90),(84,95,88,91),(105,124,109,128),(106,125,110,121),(107,126,111,122),(108,127,112,123)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,83,55,92),(2,120,56,71),(3,81,49,90),(4,118,50,69),(5,87,51,96),(6,116,52,67),(7,85,53,94),(8,114,54,65),(9,39,57,100),(10,126,58,109),(11,37,59,98),(12,124,60,107),(13,35,61,104),(14,122,62,105),(15,33,63,102),(16,128,64,111),(17,113,29,72),(18,82,30,91),(19,119,31,70),(20,88,32,89),(21,117,25,68),(22,86,26,95),(23,115,27,66),(24,84,28,93),(34,75,103,47),(36,73,97,45),(38,79,99,43),(40,77,101,41),(42,127,78,110),(44,125,80,108),(46,123,74,106),(48,121,76,112)]])

32 conjugacy classes

class 1 2A···2G4A4B4C4D4E4F4G4H4I···4P8A···8H
order12···2444444444···48···8
size11···1222244448···84···4

32 irreducible representations

dim11111122244
type+++++-++-
imageC1C2C2C2C2C4Q8D4C4○D4C8⋊C22C8.C22
kernelC42.24Q8C22.4Q16C428C4C429C4C2×C8⋊C4C8⋊C4C42C22×C4C2×C4C22C22
# reps14111822822

Matrix representation of C42.24Q8 in GL8(𝔽17)

19000000
1316000000
00190000
0013160000
00000200
00009000
000000015
00000080
,
10000000
01000000
001600000
000160000
00004000
00000400
000000130
000000013
,
42000000
113000000
00420000
001130000
00000100
00004000
00000004
000000160
,
103000000
17000000
00890000
00690000
00000010
00000001
00001000
00000100

G:=sub<GL(8,GF(17))| [1,13,0,0,0,0,0,0,9,16,0,0,0,0,0,0,0,0,1,13,0,0,0,0,0,0,9,16,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,15,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13],[4,1,0,0,0,0,0,0,2,13,0,0,0,0,0,0,0,0,4,1,0,0,0,0,0,0,2,13,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,4,0],[10,1,0,0,0,0,0,0,3,7,0,0,0,0,0,0,0,0,8,6,0,0,0,0,0,0,9,9,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;

C42.24Q8 in GAP, Magma, Sage, TeX

C_4^2._{24}Q_8
% in TeX

G:=Group("C4^2.24Q8");
// GroupNames label

G:=SmallGroup(128,568);
// by ID

G=gap.SmallGroup(128,568);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,120,422,723,58,2019,248,2804,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=b^2,d^2=b^-1*c^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1*b^2,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=a^2*c^3>;
// generators/relations

׿
×
𝔽